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Abstract 
The aim of the present study was to investigate the effect of long term moderate drought stress on fruit yield and 
quality of four parents of the MAGIC TOM population and to gain insight into the differences in sensitivity to 
drought between large fruited and cherry tomatoes. Results showed that long term water deficit had a negative effect 
on fresh mass and fruit diameter that were more expressed in cherry tomatoes than in large fruited ones. Long term 
moderate water deficit can improve fruit taste in large fruited tomato genotypes by active metabolic accumulation 
of soluble sugar and organic acid (sucrose and citric acid), which are also osmotic active compounds. The reduction 
in fruit growth of cherry tomatoes compared to large fruits could be compensated for by improving fruit nutritional 
value (ascorbic acid, carotenoids and antioxidant activity) through both concentration and metabolic responses. 
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Introduction
Drought limits productivity of crops and 

vegetables by inducing different morphological, 
physiological and molecular changes in plants, which 
consequently reduces the yield and its quality (Ashraf, 
Harris, 2013). Adaptation measures to mitigate the 
reduction of yield induced by climate change besides the 
application of different irrigation strategies (including 
partial root drying) also include the use of drought 
resistant genotypes to increase crop water productivity 
(Jovanovic, Stikic, 2012; Sun et al., 2014). However, the 
prerequisite for the development of resistant genotypes is 
a better understanding of the plant response and adaptation 
to drought stress, the improvement of phenotyping, 
the selection of key-genes involved in the resistance to 
drought and the evaluation of the impact of resistance 
on crop yield and quality. These are very difficult tasks, 
because reactions of plants to drought are the complex 
phenomenon, where the plant response depends on the 
species or genotypes, the type, duration or intensity of 
drought and on phenological stage, in which drought 
stress is experienced (Chaves et al., 2003). 

Tomato taste and flavour rely on the balance 
among essential compounds such as sugars, organic acids, 

secondary metabolites (carotenoids and polyphenols) and 
ascorbic acid. Crop production and fruit quality are often 
exposed to several stress factors and their interaction 
affects plants to a larger intensity than the effect of 
one individual stress (Lipiec et al., 2013). However, 
the effects of water deficit on fruit yield and quality 
mostly depended on the genotype, on the plant and fruit 
developmental stage at the time stress occurs and on the 
interactions with other stress factors (Ripoll et al., 2014). 

Generally, water deficit is expected to reduce 
the flux of water to fruit, to stimulate the accumulation 
of osmotic compounds like soluble sugars and acids 
and to trigger the synthesis of antioxidant compounds, 
including vitamin C and carotenoids (Dorais et al., 
2008; Fanciullino et al., 2014). However, this increase 
may result either from concentration effects due to a 
decrease in the amount of water accumulated in the fruit 
and/or from a higher synthesis of specific metabolites. 
Accordingly, Zheng et al. (2013) and Ripoll et al. (2014) 
demonstrated that water deficit could also have beneficial 
effects on tomato fruit quality and health value with 
minimal reduction of the yield. 
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Currently, the main challenge is to develop 
plants not only able to survive stress, but also able to 
grow under adverse conditions with reasonable biomass 
production, overcoming the negative correlation between 
drought resistant traits and productivity, which was often 
present in previous breeding programs (Chaves, Oliveira, 
2004; Causse et al., 2011). For tomato, the MAGIC 
TOM (the multi-parent advanced generation inter-
cross) population encompasses the highest rate of allelic 
variability in tomato (Ranc, 2010) and offers a potential 
source of genetic variation to outline traits useful for 
stress breeding programs for both cherry tomatoes and 
tomatoes with long fruits. 

The aim of the present study was to investigate 
the effect of long term moderate drought stress on fruit 
yield and quality of four parents of the MAGIC TOM 
population and to gain insight into the differences in 
sensitivity to drought between large fruited tomato and 
cherry tomatoes. 

Materials and methods
Plant material and experimental conditions. 

The study was performed on four tomato (Solanum 
lycopersicum L.) genotypes from the eight parents of 
the MAGIC TOM (the multi-parent advanced generation 
inter-cross) population, which offers the largest allelic 
variability observed in tomato (Ranc, 2010). The 
genotypes selected were two cherry or cocktail tomatoes 
(‘Plovdiv’ and LA1420) and two tomatoes (‘Levovil’ 
and LA0147) with large fruits. The experiment was 
conducted in the glasshouse in 2014 (March–July) at 
INRA, Avignon, France. 

The plants were raised from the seeds and 
transplanted into 4 L pots filled with compost mixture: 
60% black peat, 30% fibrous peat and 10% white peat, 
with pH = 6 and with clay. Over the whole experimental 
period, the mean daily photosynthetically active radiation 
(PAR) was from 5 to 11 mol m-2 day-1, the air temperature 
and relative humidity remained relatively stable (the 
average temperature 24–28/17–21°C day/night and the 
air humidity 51–56/69–73% day/night). 

Water deficit treatment. At the stage of 2nd flower 
truss anthesis, water deficit was implemented and soil 
humidity was maintained around 25% of maximum water 
retention capacity until fruit harvesting (red-ripe stage). 
Control plants were irrigated until the end of experiment 
in order to maintain optimal soil humidity (70% of 
maximum water retention capacity of the compost). Soil 
humidity was maintained by an automated irrigation 
system and controlled by a Wireless Control Module 
sensor (“Grodan”, The Netherlands). 

Measurements of fruit quality parameters. 
Fruits were harvested at full maturity, red-ripe stage. 
Soluble sugars (glucose, fructose and sucrose) and 
organic (citric and malic) acids were extracted following 
the protocol by Gomez et al. (2002). The high-pressure 
liquid chromatography (HPLC) analyses were done by 
HPLC system (“Waters”, USA) with a UV detector at 
210 nm. The separation of sugars was carried out on a 
Sugar-Pac I column (300 × 6.5 mm) (“Waters”, ref. 
WAT088141) equipped with a pre-column (“Waters”, 
ref. WAT015209). The mobile phase consisted of Na2Ca-
EDTA (50 mg L-1) and was delivered at a flow rate of 
0.6 mL min-1. The separation of organic acids was carried 
out on a Shodex RS pak KC-811 column (300 × 8 mm) 

equipped with a pre-column Shodex RS pak KC-G (50 × 
6 mm). The mobile phase consisted of 0.1% H3PO4 (flow 
rate 1 mL min-1). 

Carotenoids (phytoene, lycopene, β-carotene 
and lutein) were extracted by micro-method and analysed 
by HPLC (Serino et al., 2009). Carotenoid analyses were 
performed with a HPLC system with a diode array detector 
(“Agilent”, USA). The separation was carried out on two 
columns (VWR Merck, ref. 1.02129.0001, Chromolith® 
RP-18 endcapped 100 × 4.6 mm monolithic) with a pre-
column (VWR Merck, ref. 1.51452.0001, Chromolith® 
RP-18 endcapped 10 × 4.6 mm monolithic). Mobile 
phase consisted of acetonitrile, ethyl-acetate and 
ultrapure water in the range of 53:40:7 with a flow rate 
of 1 mL min-1. For peak identification and calculation 
of analysed carotenoids, the HPLC standards (Cayman 
Chemical, USA) were used. 

The ascorbic acid analysis included two assays: 
total ascorbic acid (with the addition of dithiothreitol 
– DTT) and reduced ascorbic acid (without of DTT) 
content according to the protocol by the Stevens et al. 
(2006). Grounded fruits were homogenized with cold 6% 
trichloroacetic acid (TCA), vortexed (20 s), centrifuged 
(15 minutes, 4°C, 13200× rpm), and then the supernatant 
was used for further analysis. After addition of DTT 
(total ascorbic assay) and phosphate buffer (reduced 
ascorbic assay) the microplate was incubated at 37°C for 
20 minutes. In the wells with DTT the N-ethylmalemide 
(C6H7NO2) was added. The plate was incubated with a 
colouring agent for 60 minutes at 37°C. The absorbance 
was read at 550 nm using a microplate reader (“Tecan”, 
Switzerland) and the results were expressed on fruit fresh 
weight basis. 

The antioxidant capacity of the samples was 
measured using 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid (ABTS assay), following the modified 
protocol of Miller et al. (1993). Extraction of ground 
tomato fruit samples was done by 80% ethanol, and then 
the samples were vortexed, centrifuged (9000 × rpm) and 
finally the supernatant was used for analysis. ABTS•+ 
radical cation was prepared by dissolving ABTS in 
phosphate-buffered saline (PBS) buffer (pH = 7.4) 
and adding manganese dioxide to oxidize ABTS. 
The absorbance for standard curve and samples was 
measured at 734 nm with a Spectro UV-VIS RS 1166 
(Labomed Inc., USA). The results were expressed as 
μmol of Trolox equivalent antioxidant capacity (TEAC) 
kg-1 fresh weight (FW). 

Statistical analysis was performed using 
software SigmaPlot, version 11.0 (Systat Software Inc., 
USA). Descriptive statistic was done for each group 
of measurement. Standard errors of the means were 
calculated and they are stated in the tables. Differences 
between treatments were estimated by a two-way 
ANOVA/MANOVA procedure Statistica 99 (StatSoft Inc., 
USA), and the Student’s t-test was used to determine the 
significant differences between the means. 

Results and discussion 
Exposure of the plants to long term moderate 

drought stress had a reducing effect on fruit fresh mass 
in all investigated genotypes (Table 1), but the effects 
were more expressed in cherry tomatoes (‘Plovdiv’ and 
LA1420) than in large fruits tomatoes (‘Levovil’ and 
LA0147). 

Fruit quality of cherry and large fruited tomato genotypes as influenced by water deficit
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In all genotypes the dry matter content of 
fruit increased, while reduction of fruit diameter was 
statistically significant only for the cherry tomatoes. The 
effects of drought could be different depending on the 
intensity of the stress and the stage of fruit development 
when a water deficit is applied (Kuşçu et al., 2014; Chen 
et al., 2015). This could explain the discrepancy of our 
and Ripoll et al. (2016 b) results, where reduction in 
fruit fresh weight of cherry genotypes was not found 
after short term repeated drought and recovery periods 
at specific developmental stages. Our experiment started 
at anthesis, prolonged until maturity stage, and our plants 
were exposed to a much longer period of water deficit. 

Soluble sugars and organic acids are major 
osmotic compounds that accumulate in fleshy tomato 
fruits and determine its taste. Our results revealed 
specific genotypic differences between cherry and large 
fruits. The results showed that in all genotypes glucose 
and fructose content had a tendency to decrease, although 
the sucrose concentration, as the most important trait 
for sweetness perception and marketing value of the 
fruits (Baldwin et al., 2008), increased in all genotypes, 
especially in large fruited tomatoes (Table 2). 

On the contrary, results of Ripoll et al. (2016 a) 
demonstrated that the majority of genotypes from 
MAGIC TOM population were not strongly affected by 

Table 1. Fruit fresh mass, dry matter content and diameter of tomato fruits exposed to optimal and water deficit 
conditions 

Genotype
Fresh mass g Dry matter % Diameter mm

control drought control drought control drought
Plovdiv 45.20 ± 1.95 19.33 ± 0.70*** 7.52 ± 0.13 9.59 ± 0.14*** 41.87 ± 0.76 31.41 ± 0.54***
Levovil 104.05 ± 9.08 88.29 ± 9.36 ns 5.26 ± 0.32 6,49 ± 0.38*** 65.57 ± 4.33 57.05 ± 2.28 ns
LA1420 64.04 ± 7.11 25.31 ± 5.14*** 6.61 ± 0.10 8,83 ± 0.44*** 53.83 ± 2.14 38.66 ± 3.36**
LA0147 107.84 ± 12.71 57.30 ± 6.26*** 5.94 ± 0.18 7,69 ± 0.47*** 60.79 ± 3.16 52.37 ± 3.03 ns

Note. Values are mean  ±  standard error (n = 6); levels of significance are represented by *P < 0.05, ** P < 0.01 and *** P ≤ 0.001, 
ns – not significant.

Table 2. Soluble sugars content (g 100 g-1 dry weight) in tomato fruits exposed to optimal and water deficit conditions 

Genotype
Glucose Fructose Sucrose

control drought control drought control drought

Plovdiv 24.74 ± 0.21 24.56 ± 0.33 ns 22.15 ± 0.21 20.95 ± 0.38* 1.19 ± 0.04 2.29 ± 0.08***
Levovil 24.28 ± 0.56 24.98 ± 0.18 ns 23.53 ± 0.34 22.32 ± 0.30* 0.23 ± 0.02 1.19 ± 0.04***
LA1420 22.93  ± 0.16 21.62 ± 0.47** 21.15 ± 0.21 19.25 ± 0.27*** 0.63 ± 0.03 1.48 ± 0.10***
LA0147 23.53 ± 0.41 19.65 ± 0.40*** 21.64 ± 0.32 17.57 ± 0.19*** 0.41 ± 0.03 1.62 ± 0.07***

Explantations under Table 1

the different level of stress in repeated drought. These 
differences can be explained by the varying degree of 
stress, to which the plants were exposed. Since large 
tomato fruits exhibited reduction of fruit fresh weight and 
fruit diameter under water deficit (Table 1), it could be 
presumed that the higher accumulation of sucrose in these 
fruits could contribute to osmotic adjustment necessary 
for continuing fruit growth in water deficit conditions. 

Drought also affected organic acids and increased citric 
acid in the fruits of all genotypes (Table 3), but the effects 
were more expressed in the large than in cherry fruit. 
Results of Sun et al. (2014) showed that the increase of 
organic acid does not necessarily lower the quality of 
fruits. Increase of both sugars and organic acids could 
improve tomato fruit quality under water stress (Nahar 
et al., 2011). 

Table 3. Organic acids content (g 100 g-1 dry weight) in tomato fruits exposed to optimal and water deficit conditions 

Genotype
Malic acid Citric acid

control drought control drought

Plovdiv 1.86 ± 0.05 2.20 ± 0.08*** 4.16 ± 0.04 4.60 ± 0.09***
Levovil 2.57 ± 0.08 2.31 ± 0.09 ns 4.05 ± 0.04 4.81 ± 0.03***
LA1420 0.63 ± 0.03 0.70 ± 0.02 ns 7.35 ± 0.08 8.13 ± 0.09**
LA0147 2.41 ± 0.08 2.64 ± 0.06 ns 5.01 ± 0.09 6.14 ± 0.12***

Explantations under Table 1

Different secondary metabolites, including 
carotenoids, are responsible for the nutrient and health 
values of tomato fruits and also are genotype-specific 
(Schweiggert et al., 2017). Comparison between cherry 
and large fruits showed that in both optimal and drought 

conditions fruits of cherry tomato had a higher total 
carotenoid content than large fruits, mainly due to higher 
content of lycopene and phytoene (Tables 4 and 5). In this 
study, the effect of drought stress was more expressed 
on β-carotene accumulation than lycopene that could 
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be indirectly connected to their role in the biosynthesis 
of plant water-stress related hormones as abscisic acid 
(Riggi et al., 2008). 

Tomatoes are characterized by high fruit 
antioxidant capacity, and many literature data indicated 
that this trait is genotype specific (Nour et al., 2013; 
Klunklin, Savage, 2017). Our study showed that long 
term moderate drought stress induced the increase of 
total antioxidant capacity in all analysed genotypes, but 
this effect was more expressed in cherry than in large 
tomato fruits (Table 6). 

The high antioxidant activity of cherry tomato 
cultivars was also induced by oxidative stress generated 
by moderate water deficit (Sánchez-Rodríguez et al., 
2010). Among the plant antioxidants, ascorbic acid 
(vitamin C) is a major antioxidant playing a vital role 
in protecting against various environmental abiotic 
stresses (Venkatesh, Park, 2014). In our experiment 
long term drought stress significantly increased total and 
reduced ascorbic acid contents in all analysed genotypes, 
especially in cherry tomatoes (Table 6). This increase 
could be a result of the oxidative stress-induced formation 

Table 4. Lycopene and β-carotene content (mg kg-1 fresh weight) in tomato fruits exposed to optimal and water deficit 
conditions 

Genotype
Lycopene β-carotene

control drought control drought
Plovdiv 73.54 ± 2.12 74.65 ± 2.18 ns 2.58 ± 0.09 3.02 ± 0.07**
Levovil 55.81 ± 1.64 52.19 ± 1.45 ns 4.72 ± 0.04 3.43 ± 0.07***
LA1420 68.03 ± 2.12 101.95 ± 1.44*** 3.64 ± 0.06 4.39 ± 0.07***
LA0147 40.31 ± 1.82 40.84 ± 2.30 ns 2.92 ± 0.01 3.27 ± 0.07**

Explantations under Table 1

Table 5. Phytoene and lutein content (mg kg-1 fresh weight) in tomato fruits exposed to optimal and water deficit 
conditions 

Genotype
Phytoene Lutein

control drought control drought
Plovdiv 11.57 ± 0.28 14.94 ± 0.49*** 0.74 ± 0.02 0.97 ± 0.02***
Levovil 3.70 ± 0.11 4.40 ± 0.1** 0.90 ± 0.03 1.16 ± 0.02***
LA1420 8.36 ± 0.14 14.30 ± 0.10*** 0.70 ± 0.02 1.04 ± 0.02***
LA0147 4.24 ± 0.12 4.68 ± 0.04* 1.15 ± 0.03 1.57 ± 0.04***

Explantations under Table 1

Table 6. Antioxidant capacity, total and reduced ascorbic acid content of tomato fruits exposed to optimal and water 
deficit conditions 

Genotype
Antioxidant capacity

µmol TEAC 1000 g-1 FW
Total ascorbic acid

mg 100 g-1 FW
Reduced ascorbic acid

mg 100 g-1 FW

control drought control drought control drought

Plovdiv 1582.72 ± 21.03 2863.63 ± 84.68*** 20.78 ± 0.47 21.26 ± 0.76*** 18.24 ± 0.21 28.70 ± 0.40***
Levovil 1411.54 ± 18.17 1866.33 ± 16.83*** 24.88 ± 0.58 27.91 ± 0.40*** 23.41 ± 0.59 27.43 ± 0.52***
LA1420 1370.00 ± 12.85 2124.00 ± 22.91*** 22.84 ± 0.71 32.58 ± 0.97*** 22.62 ± 0.70 29.65 ± 0.54***
LA0147 1613.21 ± 16.79 2546.73 ± 15.39*** 22.68 ± 0.59 28.07 ± 0.58*** 21.94 ± 0.56 26.77 ± 0.96***

Explantations under Table 1; FW – fresh weight

of reactive oxygen species (ROS), where lycopene and 
β-carotene could also contribute to antioxidant defence 
mechanisms in fruit (Fanciullino et al., 2014). Although 
we did not measure the activity of enzyme related to 
ROS-detoxification mechanisms, the increase of the non-
enzymatic antioxidant components such as carotenoids 
and vitamin C in the fruits indirectly indicated the 
presence of antioxidant protective mechanism in the 
investigated tomato plants. 

According to Ripoll et al. (2016 a), the 
comparison of fruit quality parameters on dry and fresh 
weight basis may explain drought effect on tomato 
fruits. An increase in a certain compound per dry and 
fresh weight basis indicates that drought induced both, 
concentration and metabolic effects, while the significant 

increase only per fresh weight basis indicates that the 
drought induced a concentration effect. 

Use of such approach for assessment of sugars 
and organic acid data  (Table 7) indirectly showed that 
hexose sugars and organic acids increased significantly 
in all genotypes mainly due to the concentration effect, 
although the tendency of increasing the sucrose content, 
especially in large fruits indicated both, concentration 
and metabolic accumulation effects. 

Results for lycopene and β-carotene for most 
genotypes indirectly indicated that their content was 
mainly the result of decrease in storage / metabolism and 
can be compensated for by concentration effect, except 
for LA1420, where the higher accumulation of lycopene 
was accompanied by metabolic changes. 

Fruit quality of cherry and large fruited tomato genotypes as influenced by water deficit
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Conclusions
1. Long term water deficit can influence 

fruit quality in large tomato fruit genotypes by active 
metabolic accumulation of sucrose and citric acid, which 
are also osmotically active compounds. 

2. Higher reduction of the fruit growth of cherry 
tomatoes compared to the large fruited tomatoes can be 
compensated for by improved fruit nutritional value: 
higher content of ascorbic acid and carotenoids as well 
as antioxidant activity. 
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Santrauka 
Tyrimo metu siekta ištirti ilgalaikio vidutinio sausros streso įtaką keturių tėvinių MAGIC TOM populiacijos formų 
pomidorų vaisių derliui bei kokybei ir nustatyti vyšninių bei didžiavaisių pomidorų jautrumo sausrai skirtumus. 
Tyrimo rezultatai parodė, kad ilgalaikis vidutinio sunkumo drėgmės trūkumas turėjo neigiamos įtakos žaliai 
masei bei vaisių skersmeniui, ir tai labiau pasireiškė vyšniniuose nei didžiavaisiuose pomidoruose. Ilgalaikis 
drėgmės trūkumas gali pagerinti didžiavaisių pomidorų vaisių skonį dėl aktyvaus metabolinio tirpiųjų cukrų ir 
organinių rūgščių (sacharozės ir citrinos rūgšties) kaupimosi, kurie taip pat yra osmotiškai aktyvūs junginiai. 
Lyginant su didžiavaisiais pomidorais, sumažėjęs vyšninių pomidorų augimas gali būti kompensuojamas gerinant 
vaisių mitybinę vertę – didinant askorbo rūgšties bei karotenoidų kiekį ir antioksidacinį aktyvumą, dėl medžiagų 
koncentracijos bei metabolizmo ir spartinant metabolines reakcijas. 

Reikšminiai žodžiai: antioksidantų junginiai, MAGIC TOM, mitybinė vertė, sausra, Solanum lycopersicum. 
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