

Weed Science Society

Proceedings of the 74th Annual Meeting of the North Central Weed Science Society

December 10-13, 2019 Columbus, OH

The program and abstracts of posters and papers presented at the annual meeting of the North Central Weed Science Society are included in this proceedings document. Titles are listed in the program by subject matter with the abstract number listed in parenthesis. Abstracts are listed in numerical order followed by the author and keyword listing.

Table of Contents

Posters: Agronomic and Specialty Crops	2
Posters: Agronomic Crops I – Corn	
Posters: Agronomic Crops II – Soybeans	
Posters: Equipment and Application Methods	
Posters: Extension	63
Posters: Herbicide Physiology & Molecular Biology	69
Posters: Invasive Weeds, Rangeland, Pasture, and Vegetation Management	73
Posters: Weed Biology, Ecology, Management	
Papers: Equipment and Application Methods	
Papers: Agronomic Crops I – Corn	120
Papers: Herbicide Physiology & Molecular Biology	134
Symposium: Using RStudio for Visualization and Analysis of Weed Science Experiments	150
Symposium: Cover Crops: An Ecological Tool for Weed Management	151
Papers: Agronomic Crops II – Soybeans	4 & 197
Papers: Agronomic and Specialty Crops	
Papers: Weed Biology, Ecology, Management	0 & 215
Symposium: The What, How, and Why of Dicamba Tank Clean-Out	195
Papers: Invasive, Weeds, Rangeland, Pasture, and Vegetation Management	211
Symposium: Improving the Relevance of the NCWSS to Industry	221
Symposium: Invasive Plants	222
Author Index	224
Key Word Index	230
2019 NCWSS Society Information	233

Yield of Dicamba-Tolerant Soybean as Influenced by Micro-Rates of 2,4-D. Stevan Z. Knezevic*, Jon Scott, Darko Jovanovic, Ivan B. Cuvaca; University of Nebraska-Lincoln, Lincoln, NE (24)

ABSTRACT

Like other auxin herbicides, 2.4-D is typically associated with increased risk for drift-related damage to non-target crops. A study was conducted in 2019 near Concord, NE to investigate the impact of 2,4-D micro-rates on dicamba-tolerant (DT) soybean yield. The experiment used a randomized complete block design (RCBD) with four replications and a split-plot arrangement. Main plots consisted of three 2,4-D application times [second trifoliate (V2); beginning of flowering (V7/R1); and full flowering (R2)] and subplots consisted of six micro rates of 2,4-D (1/5; 1/10; 1/50; 1/100; 1/500; and 1/1000 of the label recommended dose of 1,120 g ae ha⁻¹) anda check with no herbicide applied. Crop injury was visually assessed at 7, 14 and 21 days after treatment (DAT). Grain yield was also collected. Increase in 2,4-D dose increased soybean injury and reduced yield. Less than 1/10 of the label recommended dose of 2,4-D caused 5-20% injury regardless of application time. V2 and R2 were 1.9- and 2.6-fold, respectively, more sensitive to 2,4-D injury than the R1 stage at 21 DAT. The effective dose of 2,4-D required to cause 5% soybean injury at 21 DAT at V2, R1 and R2 was 49.27, 94.26 and 36.59 g ae ha⁻¹, respectively. In regards to yield reduction, the V2 and R1 stages were 4.2- and 3.5-fold, respectively, more sensitive to 2,4-D than the R2 stage. Preliminary data analysis showed that dose of 2,4-D of 7.17-8.72 g ae ha⁻¹ reduced soybean yield by 5% (0.2 Mg ha⁻¹) at the V2 and R1 stages. These results show that off-target movement of 2,4-D can significantly reduce soybean yield and therefore should be avoided.